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DISCLAIMERS
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SUMMARY

A variational developrent of the governing equations and boundary condi-
tions for the bending and buckling of sandwich curved plates and shells
is presented. The theory is applicable to sandwich construction of the
honeycomb type and may be used to describe bending, buckling, and post-
buckling behavior. With the coupled effects of core transverse shear

and normal strain included, the theory reflects the presence of 8 degrees
of freedom and 2 constraining conditions. Nine boundary conditions per
curved plate or shell edge can be specified; apart from the four of the
usual type for each of the sandwich facing elements, in terms of either
a generalized force or displacement, a condition for either the shear
loading or the average displacement of the core is obtained., The gov-
erning equations, specialized for small-displacement buckling, are applied
to the case of axial compression of circular cylindrical shells. The
unified theory analysis reflects three modes of buckling: classical
general instability and both symmetric and antisymmetric wrinkling.
Comparison of the results with published experimental data for honeycomb-
core sandwich shells of practical dimensions yields very strong evidence
to suggest that the axial compression buckling load and failure mode of
such shells, unlike homogeneous, isotropic shells, are given in good ap-

proximation by a linear theory.
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FOREWORD

The work reported herein constitutes a portion of a continuing ef-
fort being undertaken at Stanford University for the U.S. Army
Aviation Materiel Laboratories*under Contract DA Lh-177-AMC-115(T)
(Task 1F162204A17002) to establish accurate theoretical prediction
capability for the static and dynamic behavior of aircraft structural
components using both conventional and unconventional materials. A
predecessor contract supported investigations which led, in part, to

the results presented in References 2 and L.

*Redesignated Eustis Directorate, U. S, Army Air Mobility Research
and Development Laboratory.
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INTRODUCT ION

Although substantial interest in sandwich construction for aeronautical
applications was evidenced during and just subsequent to World War II,
it has been only in the last few years that the inherent potential of
composite construction, in general, has been truly appreciated. The
continual striving for lightweight structures with higher strength and
stiffness has caused significant interest in composites for aerospace
structures applications and, as a result, has led to renewed interest
in the sandwich type of composite. More and more aerospace designs are
reflecting the usage of sandwich construction in primary structural

members as fabrication and prediction capabilities improve.

As is usually the case in aerospacc developments, engineering achieve-
ments outstrip theoretical prediction of performance., Thus, to avoid
costly experimental design and conservative analysis techniques and to
realize the potential of composite structures in competition with con-
ventional metal structures, theory and practice must be made concurrent.
Unfortunately, the price to be paid for achieving more optimum structures
is complexity. Since the inherent complexity manifests itself in the
fabrication, testing, and analysis of sandwich construction, each of

the areas must receive comparable attention and the problems must be
attacked directly rather than accommodated by the introduction of con-
servative practices, The status of the design criteria for stiffened
metal shells attests to the penalties incurred by the absence of a
satisfactory theoretical solution of the problem, even though the

fabrication and testing of such shells is very well in hand.

A perusal of Reference 1, a very extensive study of the history and
state of the art in the establishment of sandwich construction design
criteria through 1965, indicates that the various stress, deflection,
and stability analyses of sandwich beams, plates, and shells are of a
discrete, rather than a unified, nature and are somewhat limited in

scope. For example, no single analysis is referred to which is



sufficiently general to predict simultaneously both general instability

and face wrinkling of sandwich plates or shells.

Since the compilation of the material presented in Reference 1, unified
studies have been completed. References 2 and 3, which are independent
and different approaches to the same basic problem, deal with sandwich
plates in which both transverse shear and normal strain effects are in-
cluded. In the former, a variational approach is utilized and both gov-
erning equations and consistent boundary conditions for prescribing
either forces or displacements are presented. Applications are made

to the stability in axial compression of two types of edge-supported
sandwich plates in References 2 and 4., In Reference 3, governing
equations are presented for sandwich plates with dissimilar faces

based on equilibrium and countinuity conditions developed in Refer-

ence 5; force boundary conditions, established in Reference 5 through
virtual work considerations, are listed. An application to buckling

in axial compression and bending of sandwich columns with dissimilar
faces results in obviously incorrect design curves. In addition, for
application to plates (all edges supported), the buckling equations

are not consistent with the number of boundary conditions prescribed.
Wempner et al., in References 5 and 6, treat the problem of sandwich
shells, the first being a general theory and the second a specializa-
tion of the general theory to the specific problem of a thin cylindrical
shell undergoing moderately large deflections, However, when the buck-
ling of shells is treated, assumptions are invoked in References 5 and
6 which render the buckling equations unusable for studying all the
wrinkling modes of instability. Also, in Reference 5, the core-
constitutive equations are unduly complex relative to the core model
employed. In connection with the work of Wempner et al., it must be
remarked that, despite earlier presentation, its very late availability
in the general literature (1965) made the theoretical development of
Reference 5 (the foundation of Reference 3) unknown to the authors

during the development of the present theory.



The present study has been undertaken (1) as a logical extension to
curved plates and shells of the unified theory of Reference 2, (2) to
present a set of governing equations, together with consistent force

or displacement boundary conditions, for the buckling and bending of
curved sandwich plates and shells, and (3) to correlate the theoretical
predictions for the buckling of honeycomb-core sandwich shells in axial

compression with test data available in the literature.

In connection with item (1), the theory of Reference 2 is obtained as
a special case when both initial-curvature and moderately large-rotation

effects are omitted,

Relative to item (2), the development and form of the governing equations
and boundary conditions of the present theory are much less complex than
those of References 3 and 5 due to the notatior, structural models, and

method utilized.

With regard to item (3), there is strong evidence to suggest that the
axial compression buckling load of a sandwich shell of practical con-
struction and dimensions, unlike the homogeneous, isotropic shell, is
given in good approximation by the linear theory. The discrepancies
that occur may be as much a function of the changes in honeycomb-core
properties present at the instant of buckling as they are a function
of initial imperfections in the geometry of the shell. Thus, a more
complete investigation of the problem suggests consideration of the
discrete behavior of the honeycomb cells rather than the current pro-

cedure of treating the honeycomb core as a continuum,
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THEORY

GENERAL CONS IDERATIONS

The basic approach taken in this study is to establish equilibrium
equations and consistent boundary conditions with the aid of vari-
ational procedures. The equilibrium and boundary condition equations
for the core and faces (Figure 1) are derived variationally from the
condition for a stationary character of the separate total potentials
for the face layers and the core layer, The equilibrium equations for
the core, applicable in the core volume, can be integrated through the
thickness of the core, Then, by enforcing continuity of displacements
at the interfaces between the core layer and the face layers, a final
set of governing equations and consistent boundary conditions is ob-
tained in only two surface coordinates, comparable to the usual two-

dimensional formulation associated with thin shell theory.

FACE CONS IDERAT IONS

The face layers are treated as thin, isotropic shells on the basis of
the Kirchhoff-Love assumptions. Rotations about the normal to the
middle surface are neglected with respect to rotations about direc-

tions tangent to the middle surface.

The middle surface strain displacement relations and the curvature

changes are (Reference T)

1 v w 1 2
€, = —u + a +— + W (1a)
1 al ’E'l ala2 1,§2 pl 21
1 u w 1 2
€, = =V Q + — + 5w (1b)
2 al ,52 ala? 2,51 Py 22
1 1 u A
Y = Vv + — u - a = [0} + DWW (IC)
120 o L o E e, TLE e, 2 L



Element of Sandwich Shell.

Figure 1.



Ky = =— + —=—q (2a)
1 1,¢ 1,¢
al 1 ala2 2
1 u)l
K, = = +—=q (2b)
2 2,¢ ) 2,¢
012 2 aloz2 1
1 1 wl ub
2K = = + — W - — -—q (2c)
12 2,8 1,¢ 1,¢ 2616
al 1 (12 2 C).’lO!2 2 ozloc2 1
where
w, = L \ -1 and W, = L \ - X
19 e A e, by Py

As observed in Appendix I, the strain energy of a linearly elastic iso-

tropic medium for which the Kirchhoff-Love approximations are valid is
c 1-v
N dif2 2 -2
Ug = ff € + €5 *+ 2V €16, + 712
i S 2 2 i

D
i 2 2 2
+ —2 [Kl + K+ 2V KKy + 2(1-y) KIE} (011012)i dE,dg, (3)
i

o
where
Et Et’
N PO . I YRR .

and i takes on the values 1 and 2 for the upper and lower faces,

respectively.
For the edge loads (Figure 2) N,,N ,N ,M ,and M _ ; the
lateral surface load p ; and the interface loads 9 5 9 and 93



Figure 2. External and Interface loads on Layers of Sandwich Shell,
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the povential of applied loads for one of the faces is

\ = - Nd +Nd + Nw+Mw -M o |o ) dg

f nn s s z n n ns s s s
i .
08 i

S {fslesga) s loese)

dt,dt, (4)

i

I+

+

(qz = P) W-] a1a2

~

where the upper sign applies to face 1 (i = 1), and the lower sign

applies to face 2 (i = 2), -

Application of the minimum total potential energy principle requires
that

S[Uf+Vf]. = 0 (5)

The actual variation is carried out in Appendix I. The resulting Euler

equations of equilibrium are

G . : l-y }
[la2 C(e1 + veg) &) C(€2 + vel) a2,§1 +10 €555 7y, ,52

l-y Sl
*C3 7120‘1,52 Py [(0‘2 D(ky + VKe)f sy
f :
- D(K2 + vKl) a2’§1 + lal D(1-v) K12$ ’§2
+ D(1-y) Kleal’EO:!; alaeql} = 1y (6a)
- i



}Otl C(€2 + vel) : - C(r__1 + v€2) al,_E,

Ly 1|

+

D(K1 + w<2) al’ge + {oze D(1-v) Ko }’51

+

D(1-y) K12a2,§1] F a1a2q2] = (6b)
i

|

1 .
a—l- [;ae D(K1 + VKE) : ’51 - D(K2 + w<1) a2,§1 + :al D(1-v) P 6

+ D(1-v) KIQQI,EE]}
i

+ {&1; [{al D(K2 + VK1)$ 6y

- 1)(;<1 + "Kz) al’ge

+ %oze D(1-v) Ky :’51 + D(1-v) K120‘2,§1”
A

1
+ oy, [C(e1 + Vee) (p1 - Kl)

AL s - sc L2v
+C(62+ve1)(p2 Ke) 2c 5 715510

+ <q3-p>] -3 [<a2q1>,§1

+ (alqa),ng]i = 0 (6c)



The boundary conditions consistent with the equilibrium equations are

‘ 1-v D D
]C(‘l tvep) epp H €= gy - T (1) Kypeqy - (kg Hy) ‘2111
2 P p
1 1
1-v D
+ C(GE + vel) ¢y * C —?- Y1001 = (1-v) K1o1
o)
2
D Mn Mns
-—--(;<2+w<1)c11 c21+NS--——+-—-— = 0
i
or 8dy; = O (7a)
l-vy D D
Cleg +vep) ey + € 75¢yy = — (1-v) Kypeqy = — (kK +wKp) epp(qp
2 P
1 1
1~y D
+ C(e2 + vel) cp * C -—2—- 711 = (1-v) K1pS01
P
2
o My ns
-—(K2+vK1)c11 Cop + N = — + = 0
Py P T
n
i
or &, = 0 (7Tb)
‘ 1-vy 1-vy
lC(cl + vce) w) +C —2— 710% { So1 * C(ee + vel) w, + C ? 715%1 ( ©11
1
- a— d11 lD(KI + VKQ) ¢y ¥ D(1-v) K12c11:

+d {D(Ke + w<1) ¢t D(1-v) K12c21” : (Cont'd)
’°s
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1

X
1%

D(r\p + vxl) (1? ¢

!
;a? D(f«1 + vKP)‘ 1

5

+
1
-——;a D(x +vV)' - D(k, + w,)
|71 e TV 1 o/ 91,k
Q. 2 2
172
+ Iag D(1-v) K1o f’Fl + D(1-vy) A1202,§1 ]Cll
t 1
S R qp°11] "Nt Mk =0
a s
s i
or bw, = 0 (7c)
[:D(Kl + w<2) oy * D(1-v) K12%11 ;del
+ D(K2 + w<1) cyp t D(1-v) SPLA ‘ dyp + M . =0 0
or Swi,én = 0 (7d)

where d12 , etc,, are transformation symbols utilized

117 120 9110
to express the boundary conditions in terms of generalized displacement
components corresponding to a curvilinear coordinate system along and

normal to the edge of the shell.

CORE CONSIDERATIONS

The core description utilized herein is representative of that associated

with honeycomb-sandwich construction. For such a core, it is reasonable

11



to assume that:

1. The inplane shear and extensional stiffncsses are negligible
with respect to transverse stiffness quantities, corresponding
to a state of stress in which T 505 T =0

2. In view of item 1, it is justifiable to linearize the rele-
vant strain-displacement relations for the core,

5. The transverse stiffnesses per cell are constant through the
thickness.

The first assumption is obvious in the case of a 'ree core of cellular

structure. When the core is supported by faceplates, the assumption

is reasonable for thick cores (c > a) and for laterally loaded sand-

wich panels witia relatively low inplane loads., However, for very thin

panels (for example, ¢ < g ) loaded in the plane of the structure,

the assumption may need reconsideration, especially when face-wrinkling

phenomena are being studied,

An element of the sandwich shell under consideration is shown in Fig-
ure 1. The middle surface of the undeformed core ({ = 0) 1is utilized
as the reference surface of the shell. Orthogonal curvilinear coor-
dinates §1 and §2 are taken along the curvature directions, The
principal radii of curvature are positive as shown in the figure. The

coordinate ! 1is measured normal to the §1§2 surface,

On the basis of the core model, the relevant constitutive equations for

the resulting antiplane state of stress are

g0 F(t) €5 3 Tz = Gl(t)713 Ty = GQ(C)rz.3 (8)

In Equation (8), the stiffness functions for a curved element are ap-

propriately designated as
=5
F(t) = F =182 o (Cont'd)
a,(t) a,(t)

12



a

G (t) = 6 ——

! Y oat)
a1

G,(6) = G (9)
o (t)

where al % &2 S L G1 , and G, are the values of these quantities

when £ =0 .

2

The linearized strain displacement relations are

u 1
= =5 A 1
713 u,C 2, Cxl’C + o w’§1 (10a)
v 1
= -—=q + = 10b
723 V’c a2 2)§ ae W, §2 ( )
€3 = W,c

With the use of Equations (8) and (10), it is shown in Appendix II that

the strain energy of the core is

oo SR Gt o da) B famus oo
R

For the edge load q* and the interface load system with components

q » 9, , and a3 (Figure 2), the potential of applied loads is

c/2
VR f/ (q1u+q2v+q3w) 0, d§1d§2
s t=-(c/2)
c/2
- JJ dwee 02
s ~(c/2)

15



When the minimum total potential energy principle is applied to the

6[U +V]
C C

the equilibrium equations and b. .ndary conditions are obtained as shown

core in the form

(13)

]
o

in Appendix II. The equilibrium equations are

2 , 2
6 = (@ry5), = 0 (1ha)
a
1
a
% 2 )
Sp = Orp3)p = O (14b)
>
1 i —
] s .5 <a2G1715))§1 + (a169723),€2 0 (1kc)
1%

The boundary conditions congistent with these equilibrium equations are

%
17713 T 9 (15a)
(04
2
al
GE - 723 = qg (ljb)
(0
1
a.a
E=i=t Ve = 9 (15¢)
3
%%
62 a1 *
Gl - 71502d§? + 62 — 723a1d§1 - - q asdgs or dw=20 (15d)
%o %

INTERFACE _CONTINUITY CONSIDERATIONS

At the present point, the governing equations and boundary conditions

have been derived for the core and faces considered as separate media.

14



In order to ensure continuity of deformation in the composite sandwich
shell, the components of the core and face displacements must satisfy

the conditions

u(eptes) - (w3 ‘”1)1
. (16a)
u(ty,tpmg) (w5 o)
C t
v(E,E,5) = (v+3 wp)l
(16b)
(-1)—'2) _;-) = (V = -;- '1)2)
2
W(alya?,g) Wl
(16c)

C
w(gl}gp,‘-g) w2

As demonstrated in Appendix II, the satisfaction of conditions (16a,b,
and c) subsequent to integration of the core strain-displacement equa-

tions gives rise to the two interface compatibility equations

c c 1 c +t c2 + 3t,c
_ 1 1
uy 1- -, 1 4+— )+ Ve =
s
PP, CEIP AN 1 2 601
1 c + t? c2 + 3t,.c
+—w -+ = 74€
= I E 1
ay 1 5 6p1
c5 G1 _ G2 _
+ — == (@) + == () = 0 (17)
= ) - )
12 Foz1 ozloz2 1 a1a2 I
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c c 1 cC 4+t ¢+ 3t,c¢
1 1
vifl-—)-v|1+— =, o =
4
?p? ?pp Q) o 2 ()p?
1 c + t2 c2 + 3t2c
+ _— w2 g + = YPC
3
a, 2 2 60?
c3 C1 _ G? _
t—— o (oyry) T (o) =0 (18)
1
12 Hae alap 1 a]a? ,§2

As is also shown in Appendix II, additional results stemming from the
integration of the core equations permit the interface loads 9 » 9 >
and q3 and the boundary conditions for the edge of the core to be
expressed in terms of the face displacement components U, vy and

w, and the core shear angles 71 and Yy o

i

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

With terms usually eliminated from shallow-shell theory denoted by an
asterisk, the final set of governing equations describing the behavior
of the sandwich shell is

l
l02 C(c1 + V€2) e - C(€2 + vcl) 02,51

v

+ 4
171 %7 12‘,§2

1-y 1
C— vy, O - —
5 12 1,§? p1

|

'a2 D(K1 + vxg)‘

+

2§y

+

‘al D(1-v) «

l

D(k, + vxl) a

2 2] 12 | .t

*
+ D(1-v) KIQQI’EQI

H

a,a.G,y, {1 F ¢ — = 0 (19a)
1727171
20102
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‘-l- [‘a D(k, + vk,)
la 1% P01 e

1-y '

c—

‘
+a
N 12"5

2
' 1
lal D(K2 + w<1) :’§2

Py
2p

19b
$a06272(1¥c (19b)

1%
12

l
‘,ge

l

|
(1) - D(K2 + wKy) 012,§1 + lal D(1-v) Ko

I

J¢

+ D(1-v) K12(11,§2

- D(Kl + w<2) ozl,§2 + '012 D(1-v) «

+ D(1-v) K12a2,§1 ]

/{1

- =K

+ .

t
19 (Cont'd)

[C((-:1 + vee) 1)
|
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1 1-y
C —_— . - —_—
+ (<? + val)( K2) oC 715K
p 2
)
Py + P
xptF(1¥c L—‘c
20199
W, - W c c G
)
c 2 301 F 1(12 1
c c G
F - (1 F ———) _2_ (alyg) ¢ {
1
2 Bpp F la? 2
t Py + 205\

CtGy(l?c
2171 |
‘ 2P1P5 3

2p, + p
+ =a16272 (1 F e —1——2): I
2p1P, s €5

2
= 0 (19¢)

i

The boundary conditions in final form, which permit either generalized

forces or displacements to be prescribed, are

‘ 1-vy D ” D *'
Clc, + v ) €Cag +C— y  coy = — (1-y) KyoCqq = — (K;+VKy)Cpy (€
' 1 2 21 5 12711 12711 1 2 21‘ 11
P P
1 1
‘ l-v D *
+ 'C(‘e tvig)e +€ S L T (1-v) k15009
o
2
* *
--Ii(’«& ')c*'c +N-'—n+& = 0
"2tV a1 T s
02 T Ds
i
or d gy = 0 (20a)
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‘ 1-y D 5 D
Clq *+ vep) epy # € s (130 mpoeq (np+va) o ipp
N
1 1
‘ l-vy D N
#Clp v v e e C PR (1-v) x 1o
P
2
* +*
o ¥ Mn ns
—(K2+w<l)cn‘c22+Nn-—+ = 0
92 pn T
i
or 5 - 0 (20b)
[ l-y { l-y '
'C('l + V(E‘) ml + C T 712;09‘ c;_)1 + lC(€2 + vrl) J)2 + ? 7124)1‘ ‘ll
-_l d ‘D(r( + w.) e, +#D(1-y) k., .c ’
& 11' 1 27 "1 12 11‘
s
+d ‘D(K + wW,) c.. +D(1-y) a,.c '
12 , 2 1 11 12721 ‘ ¢
1ig
-—1—‘0 D(x +w<)' - D(xk, + vw,) Q
o, 2 1 2 ‘,gl 2 1 2,8, ;
‘
+ ‘Q D(1-v) ~ + D(1-y) x, . ¢
| %1 SV 12%1,¢, |21
s 2
2
;‘a D(x +v\, D(x, + va.)
- (2% - A [aY
aya, | 17} 8, 1 20 L,
‘ l :
+ la? D(1-v) Ko | ’51 + D(1-v) A1202’§1 1 (Cont'd)
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t
+—
2

Glyl (1 Fc

- N +—M
z ns,§s

‘

+

or dw

r

%

+——
a,a,

Py + 2p,

21k

:D(K1 + vK2) oy * D(1-vy) K1p%11 ‘

€ %1711 * G721 * @

¢ c c
o) wl (1 -—)+w2(1 +—)+—
0,

Bps

!

= 0

] = 0 or

~

6F

75) :
1727,

d21

(o

Py + 20
)c21 + G272 (1 Fc ———)cll

2010,

= 0 (20c)

'D(Kg + VKI) c;p * D(1-v) K12c21} d22 + Mn] 1 = 0

7q)
271 ,El

(20e)

The governing equations and boundary conditions given by Equations (17),

(18), (19), and (20) are sufficient to determine the bending, buckling,

and postbuckling behavior of sandwich shells under prescribed loads and

boundary conditions.

Special forms and an application of these equations are treated in sec-

tions to follow.
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Shallow Shell Equations

In many instances, the contribution of inplane displacements to the
rotations ™y and w, of the face layer is small, Especially in
the case of shallow-sandwich shells and shallow regions of nonshallow

shells, the expressions for the rotations can be simplified to give

1
w = = W
19 L
(21)
1
w, = — W

If these rotation expressions are utilized, then terms marked by an
asterisk have to be omitted from the governing equations and boundary
conditions. In such a case, the equations for the faceplates are es-

sentially those commonly referred to as the von Karman-Donnell type.

Thin Shell Equations

In cases where the total shell thickness (c + t1 + t2) is negligible

with respect to each of the principal radii of curvature (pl,pz) -

terms of the order (c + t, + te)/p or, in view of the Kirchhoff-Love

1
assumption (t/p) << 1 , of the order c/p can be neglected with re-
spect to unity. As a further consequence, the differences in the metric

components (al,a and the radii of curvature (pl,pz) of the two

5)
face layers must be neglected., With these simplifications, the gov-
erning shallow-shell equations and boundary conditions of the previous

section reduce to

| by )

a, C(e1 + V€2)$ - :C(e2 + vel)’-i 02,51 +0;4C— 7, ‘1

It 2 'Es
1-v
+1C—y a Fa.0.6,7, = O (22a) i
{ 5 12‘1 1,6, 1211

2l

R

=



q:
2,8 T M1%%7

0 (22b)

+
A ———
o
~—~
—

1
<<
S
X
J—
v

1+
Q
Q
|
)
—
]
£

(22¢)

+
2]
n
~~
Q
—
=
no
‘.v
urr
no
——
(@]

22



10(61 g Vce)} , St Y IC L ;i (11610 * €p1%00)

1-v

+ ic(c2 + vel)§ . €116 + Nyy = O o &d

1-y
tc(el + vee) w, + ¢ —

_fa [
%%

+ Iozl D(1-v) K12% . +
1,

Y 5 AW c
1 > 122}i 21

1-v
C(€2 + vcl) w, + C —

+ Y90 c
2 5 121}i 11

1

+d), HD(K2 + w<1) ; Ceqp t {D(l-v) Kqo ii CEI]}

a,, D(;<1 + er) } . o
i pé

- :D(Ke + vKl)

1

D(1-v) kyp } . al,ée]

a

C
;1[ 0y D(K2 + vkl):
a0, di, i

- % D(K1 + VK2)

2

25

(%) (23b)

- d D c D(1- c
GJH[{ ("1“’"2)}1 21*{ (1-v) K1:2}]L 11}

)€

s

1 &6

1,§2

(Cont'd)
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+1a, D(1-v) « ' + ’D(l-v)

S PR

i
12 hae,gl

1

t
j.I
+ — |Gyr,¢,, + Gy C ]-N + — M = 0
> 171721 2°2°11 z1 a m;i.,E,B

or Bw, = O (23¢)

D{1-v) Ky, 51 °11] 4oy

”D(Kl + w<2) }1 €y +

|

[aN

)
DKy + vy ) i it {D(l"’) K12 }1 c21] 22

+M, = 0 or 5w1,§n =0 (23d)
[c c | =0
€ 15171%;1 * %711t 9 | T o
<2
Sl ¥ * ¥t '6—F¢Ta G1(a271)’§1 + 62(0‘172),52” = 0 (23e)
1%

These equations for the sandwich configuration in which F -5« are
those of Reference 8. Further, if the bending stiffness of the faces
is neglected (membrane faces), then the equations represent the gen-

eral form of the classical theory for sandwich shells of Reference 9,

Py
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APPLICATION TO COMPRESSIVE BUCKLING OF THIN CIRCULAR CYLINDERS

GOVERNING EQUATIONS AND BOUNDARY CONSIDERATIONS

The present theory is applied to the problem of determining critical
loads for a uniformly axially compressed cylinder of honeycomb sand-
wich construction, Attention is directed especially to establishing
the effect of core stiffness on the distinct instability modes and the

interactions of these phenomena. The cylinder is shown in Figure 3.

In Appendix III, the shallow-shell equations are specialized.for the
case of cylindrical coordinates. Uniform, radially symmetric deforma-
tions are assumed to prevail under the axisymmetric load up to a criti-
cal value; that is, edge restrzints are considered not to influence the
deformation prior to buckling. To determine the possible bifurcation
points of the load-shortening relationship, infinitesimal deformations
measured from the unbuckled, compressed state are used. The special-
ized governing equations (Equations (119) of Appendix III), in terms

of these deformations, are

[ w \| 1-y [ |
o _ul,x + v (vl,(p + ?) " + C —2— -ul’q) + V1,x | =G, = 0 (24ka)
C—u +v(v +-w—2-) +Cl-—VFu + v T + Gy, = 0 (2ub)
i 2,x 2,9 g ],x 2 | 2,0 2,x 1,0 1’1
1-v [ ] [ W) ]
c : - U o + V1, x |- +C Lv1,<p+ : tvuy Il 2 =Gy, = O (2he)
c E:X — u + v q + C.; + e +vu 1 + Gy, = 0 (24d)
> k 2,9 2,% ],x i 2,0 R 2,x 1,0 2’2
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Glyl,x + 6272,(9) = 0 (2he)

N | o

(@]
k3]

DV 'w, +

o
|
<
no
-
S
4
-
<
e
no
-
»®
[ |
<+
=
xs:
no
-
b
b

t
-;(Glyl,x+G272,(P) = 0 (2kf)
C3 ( c+t
u, - u, - cy, + — |G,y + G,y ) +— (w, +w,) = 0 (24g)
1 2 1 10F 171,x 2'2,p % 5 1 2 ,x
c5 c+t
vV, -V, - ¢y +——(Gy + Gy ) + (w, + w,) = 0 (2Lh)
O T e 16 T R T L

The appropriate boundary conditions for the specialized governing equa-

tions (Equation (119) of Appendix III) are

W
1

Clu + v (v + —= = 0 or u = 0 25a

| L% (l,q* R)J 1 (25a)
-

© ue’x+v(v2’ +—R) = 0 or u, = 0 (25b)

2v



1-v [
¢ —;_ 1,0 F vl,xJ =0 or v, =0 (25¢)
1-y ( ]
C— |u el = 0 or v, = O o564
P 2,9 E:XJ 2 (25d)
[ 1 ¢t
wal, - D Yk (2-v) wl,qupj +;G171 =0 or w =0 (25¢)
[ 1t
NXWE,X -D w2,xxx + (2-v) w2,xw + -2' Glyl = 0 or w, = 0 (25f)
D wl,xx + vw1,¢¢ = 0 or wl,x = 0 (25g)
" -y
D w2’xx + vw2’(p(p J = 0 or w2,x = 0 (25h)
2
[of
cG171 = 0 or Wy W, g; (G171,x i G272,¢) = 0 (251)

As pointed out in the development of Appendix III, the thickness of the
cylinder has been considered negligibly small with respect to the radius;

thus, the compressive load is distributed evenly over the two faces.

In addition to the general instability type of buckling, the phenomenon
of very short wave deformations (face wrinkling) receives special atten-
tion herein. The length of a cylinder is supposed to be large enough as
compared to the wavelength of any typical deformation pattern to allow

the effect of boundary conditions on the magnitude of the critical loads
to be ignored. The set of nine boundary conditions (Equation (25)) gives
rise to a very large number of possible combinations of generalized forces

and displacements. However, although boundary conditions are of decisive
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importance for edge deformation, their importance decreases as the num-
ber of repeated deformation patterns along the length of the cylinder

increases.

EQUIVALENT SINGLE GOVERNING EQUATION

It is convenient to consider a single partial-differential equation in
one of the unknowns rather than the eight simultaneous equations in
eight unknowns. 1In this way, the relative importance of the stiffness
parameters and geometric quantities can be assessed, and the character-
istic equation for the "classical" solution can be extracted directly;
in addition, the specialization to previous, but less general, theories

for plates and shells can be readily accomplished.

The governing equations can be written in the form

AT = O (26)

where A 1is the matrix of linear operators and r 1is a column vector

whose components are the functions Ug s Ugy Vyy Vs Wy y Wy y €4 ,and ¢y,

The matrix A 1is diagonalized when postmultiplied by its adjoint to

yield
Ala l” = Al (27)

where ”Aij”’ is the adinint of A or the transposed matrix of the
cofactors of the elem:nts of A , and I {is the unit matrix. |A|

is the determinant of A . Instead of Equation (26), the equation
Al 1 = 0 (28)

may be solved; that is, a nontrivial solution to the equation, say, for

the radial displacement Wy
|A] w, o= L(w) = 0 (29)

must be found. The symmetric operator matrix A is
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|Nnv -
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O —3% - () —"% - 0=
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x¢ a2 x¢ 22
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The linear operator L , corresponding to the determinant |A| , is

+

$

l

|
l

(

L | Et 2F
w(hw;gm+;+—y>

R c
(c+t)® [(30) 1 1 )
7 = () e - O
2c¢ lCc'l-v\ G 1P 2 ‘
1 2
R T
X XX 2 ,xxxx‘

!

() L 1 1
B (—/ ),xx+— ),'r)
6,6,  Ce(l-v) \G G,
> c%f)( b( ) 1 1 y
— + -—= () -— ()
cc 12F ) \cc(1-v) ¢ R o XX ‘
1 2

I ; Et
iz D'Vt'( Y+ N VM( ) + )
RCe X yXX o » XXXX
RIS 1 1 ) ¢® 14y
B CHES - — ) XX‘ +2y— () ¢+ ()
2 lcC(l-v) G g 0 12F ’ 26 ‘,qn

1 ) 2

()
& ce(1-v) 2 () 1 1 12F )
— —— —-— () -— () .+ ()
12F L Ce(1-v) 6 % ¢, clc,\c2 Ve

2 ol .
c Cc(1-y ‘ L( 1 1 12F '
— -— () -— () + 5 ()
12F L lCc(l-v) Gy ks G, X G,6,¢ ‘,xxmc

c&t? , Cc 1-y) .“ L ) 1 1 '

2n2 v \xx } v '_()r{-——()xx

R ¢ 9 XX26 lCc(l-v) G1 L 02 4 ‘,X)(CC

Cc(l-vy ‘ L( ) 1 1 )
7 = ()Y -—() (31)
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The order of the highest derivative in this operator is 18; the number
of independent conditions that can be imposed at the boundary, in terms
of generalized forces, displacements, or combinations thereof, is 9 .
Equation (31) relative to existing equations of thin plates and shell

theory is discussed in a subsequent section,

It may be noted that the operator in the governing equation (Equation

(29)) can be written as
c 2
L = Lo + (E) L1 (32)

As terms of the order c/R have been neglected with recspect to unity,
the second term on the right-hand side of Equation (32) can be ignored
if

¢ Llw

== = B

R Low

‘n estimate of the relative importance of the last part of the operator
L is made in conjunction with the analyses of the axisymmetric and non-

axisymmetric buckling modes carried out in the following sections.

Axisymmetric Buckling

For the case of axisymmetric behavior, the deformations Vi V5 and

Y5 5 &S well as all derivatives with respect to ¢ , vanish and the
resulting governing operator becomes

L 1
L = | —— - — ,xx L
Cc(1-vy) G, , XX



where

Et 2F
a2 o PN e 2T
r(c+t)2 Et
) e ( ),xxxx ( ),xxxx Nx( ),xx * ;5 )
3 1 2 )]
g e ),mx'c—1< R _
2y2 Et |
i LS I I (53)

Thus, for the case of axisymmetric buckling, the 18th order governing
equation (Equation (29)) can ° - eplaced by a lhth order equation. On
the basis of the same considerations, the number of boundary conditions
is reduced from 9 to 7. Specifically, the boundary conditions given
by Equations (25c) and (25d) become trivial.

A solution to the governing equation La(;) = 0 , corresponding to
"classical" simple support of the faceplates (vanishing radial edge

displacement and edge moment), is

- — —
uy U1 cos %?
u, U2 cos %?
T o= vy = W, sin %? (34)
w2 w2 sin %?
cyl cFlcos %%
The forms of Uy oy Uy and 1, are implied by the relationships that

exist between these quantities and the radial displacements LA and v,
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in the original governing equations. The "implied" boundary conditions

for the case of "classical” simple support of the faces

3]
I

1 D lwl,xx + le,qxp] = 0

2 D [w2,xx % vwe,cpq)}

w = = 0
are
( ¥y ]
C vtV | o= 0
,x RJ
_ W
C u, + v 22 = ¢
s X R |
c2
w, +w, +—G = 0
17 %2 " 171,x
With the use of the dimensionless parameters
N c2
k = x2 (load parameter)
™D
c c
B = — = — m (wavelength parameter)
P L
cu 12(1-y°)
t . (curvature parameter)
t2R2 ﬂh
t

. - (thickness ratio parameter)

(35a)

(35b)

(35¢)

(354d)

(35e)



and

T
PN = -2
!
E ey 7wt
6 = (—) — (stiffness parameters)
GG, c 2(1-v)

F ey 2h(1-9°)
H =5

a characteristic equation results as

L

B
[a“ - kgl B @} [3(1 r ) pt i lpt ke s g;: — + 008 + 8
~ P

|

(222
+ [a“-ka2+c] -0 (36)
1-v
Equation (36) is of the form
2 _
AK® - Bk +C = 0 (37)

where A, B, and C are polynomials in the wavelength parameter B .
As A, B, C, and B - LAC are positive definite quantities, two
real-valued positive roots are obtained for each value of the wavelength
corresponding to different values of th.: ratio wl/w2 . The relative
importance of the last term of the left-hand side of Equation (36) can
be readily determined by examining the coefficients B and C of
Equation (57). With N defined as ((gv? (1-v2) and irrelevant terms
omitted, the expressions become

2 ‘ N
2\ 10 2 ‘ (2-v2) | 62




e

S

Bh

2
| 5-ly
cp®) = =4+ ... +|n +ci

¢ 2
3+6c+ = ¢ +Q3+6c +he” + —
¢

+...+’—§cp€2{l+ E }

The quantity

N t Et ( c )
weeve 0 2FR \ R

is of the order of magnitude c/R for typically large values of E/2F
(for example, 2 X 10° ) and t/R (for example, 5 x 107 ) and is
therefore to be neglected with respect to unity. Hence, the con-
tribution of N to the last term in both B(B2) and C(BQ) is
negligible. The effect of N in the coefficient Bh in C(Be)

is certainly small, as

N 5 € c
— < O(e —)<<O(—)
oV R R
These and other simplifications of the same nature, although not essen-
tial for a numerical computation of critical values of the load and the

wavelength, allow an analytical evaluation of both in closed form. When

the N-term is negligible, the characteristic equation simplifies to

6
8% - (8" + o +§)] [ %+eoﬁ“+c262}k

L
-§3<1+()9 s”+(% +epf32+e2)(s“+t)§] -0 (38)

The characteristic equation (Equation (30)) and its simplified form
(Equation (38)) are solved for the load parameter k by using typical

values of the curvature, relative thickness, and stiffness parameters.lo

%
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The load parameter k versus the wavelength parameter [ , considered
to be a continuous variable, is plotted in Figure 4, In Figure 5, a
similar solution is presented for values of the various parameters
corresponding to low values of F and G1 to assess qualitatively

the buckling of a relatively weak-core sandwich shell. For compari-
son, corresponding solutions based on existing theories (References

11 and 8) are shown also. No quantitative distinction can be made
between the solutions of the complete and simplified quadratic charac-
teristic equations; thus, only a single curve is evidenced for each

branch of the solution.

The characteristic equation is of the form

(k - k) (k=k) = 0 (39)
where
o, 2 o) 58 16
K (8%) = 8%+ —; (10)
B
and
3(1 + ¢)° g2 ¢
2 _ 2
ky(8%) = +p% 4 — (b1)
%+6082+e2 62

Stationary values of k; or k, occur whenever Bk/a(Bg) =0 , and

a critical situation is reached when the stationary value of k 1is a

minimum (bek/B(Bz)2 > 0) . As B is a real-valued quantity, 62
is always nonnegative and, in practice, always positive. The root
k1 has only one stationary value; a minimum occurs when
1/4 1/k
(Be) = @+ & o (1)

1
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and the corresponding critical load is given by

(kcr)l = 2 \ETZT?T'.z 2 vE: (43)

since, as mentioned earlier, (/¢ may be neglected in comparison with
unity. The root k2 usually has more than one stationary value in

the P interval under consideration. This may be seen in Figures &
and 5. For the more practical set of core parameters, minimums occur,

corresponding to two very distinct values of B .,

The longwave instability mode (B << 1) can be analyzed by neglecting

terms which are obviously small due to the small size of 8 . Equa-

tion (41) then simplifies to

2 .2

)" B d ()
P

oo + 2 g

3(1 + ¢

k2 &

From this expression, a critical wavelength parameter
e -1/2
(b..) - /2 [c(l + ) V- ept|Y (45)

and the corresponding critical load parameter

) | = 21+ ) 30/% - oatfef (46)

are determined. It may be noted that the terms neglected in Equation
(L4) are those originating from the inclusion of the effects of face
bending stiffness and the core normal strain. Obviously, the result
obtained corresponds to the classical solution of Reference 11; there-
fore, the critical wavelength and load have been assigned a subscript

"c1" for this case.

N
=
C<



For the shortwave instability mode, £ is of the order of magnitude of

unity or even larger. Equation (41) may then be simplified to

3(1 + c)2 5
kez—e———+5 (47)
B /o + 0p

The critical wavelength and associated load parameter are

(ee), = |1+ - om[V? (48)
and
(kcr)2 = 2(1+¢) 3¢ - 609 (49)

The results presented in this section are discussed in detail in the

subsequent section entitled "RESULTS AND DISCUSSION".

Nonaxisymmetric Buckling

For the case of nonaxisymmetric buckling, a solution of the general
equation (Equation (28)) is sought. Such a solution, corresponding
to "classical™ simple support of the faceplates (vanishing edge dis-

placement and edge bending moment), is available in the form

_ul n B U1 cos Tx/\ sin nq"—
u, U, cos mx/\ sin no
v V1 sin mx/\ cos ny
v V. sin 7x/\ cos ng
= 2 2
r = (50)
vy wl sin mx/\ sin no
v, w2 sin 7Tx/}\ sin no
7y cl'; cos x/\ sin ng
_C)Q_J LCIQ sin mx/\ cos np




The forms of Up 5 Ug y Ve 5 Vo s 775 and y, are implied by relation-
ships that exist between these quantities and the radial displacements
w, and w, in the original governing equations. The "implied" boundary

1 2
conditions for the case of "classical" simple support of the faceplates

W, o= Dliwl,xx + le:@W] = 0 (51a)
W, = D[ L + le,QQJ = 0 (51b)
are
Y1
C[ul,x+V;J = 0 (51c)
v, =0 (51d)
Yo
Clug,x+v?} =0 (51e)
v, = 0 (51f)
2
(9
— G -
Wy b, + = 171, x 0 (51g)

With the use of dimensicnless parameters previously defined and the

buckle aspect ratio parameter

a characteristic equation is obtained as

Lo



262 S

ka2 + ¢ + rp‘ : [3(1 + )2 8% + p)" {—— + - p2(1 + poz);
1-vy P

+ ﬁu(l +p)

i kB2 (1 +p)2+§]

5 22 1 +p/o° o 5
« |6p(1 +p)B 0 + = B°(1 + p)
| 1-y 1 +p e

+

2
2¢ 6
€ ﬁ + — (1 +p) 2 }' et 52(1 o+ Ppg)}}
1-v o

+{§Bl+ B (1+ )lL - k2(1 + p)? +C}

22 2
6 2¢ 6 2p
{—+‘B(1+P02)} 2'P62(1+v+—52)

1- v P 1.y~ p 8¢

Bu 2c2 e 2
- — p(2 +p) | — + - 831 + p0)? + 0%
0) 1-vy p

+ 6B (1 + p)? (1 + ¢)2

122 3 22 g 5
. 2-—-—(p+2)—+—6(1+pp)
1-y 1+y 1-v »p

*

o (52)

This equation reduces to t... characteristic equation for the case of
axisymmetric buckling (Equation (36)) when the wave aspect ratio p
is set equal to zero., For nonaxisymmetric buckling, p 1is positive

definite and the last part of the characteristic equation, marked by

41



an asterisk, can be ignored if the condition

t/o < O(c/R) (53)

is satisfied.

Then, Equation (52) reduces to the form

(k - k) (k-k) = 0 (54)
where
£+ o
ky = B2(1 + p)? + 5 (55)
B
and
k, - po(1+p)% + :
: p°(14p)?
2 .6 2[2® g 2 2
3(1+e)” B~ (1+4p) [if_v+55 (1+pe )J
+
6l2c? 14p/o® 0.2 oy g° 2][2® 0.2, 2
op(L+p)B™ 1155 o o (1+p)| + [cB i (14p)° || 15 +5 87 (14p07)

(56)

The first factor on the left-hand side of Equation (54) leads to the

critical value of the wave parameter

1/h
oo (o + )Y 1 (o) o
B z — = —— . {(B 57
cr cr
1 1 +0p 1+p 1 p=0
and the associated critical load parameter
(k) = 21+p) T+C = 21+p) T = (1+p) (k.. )
1 1) _
p=0
(58)
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Since p s positive definite, the critical wavelength and the criti-
cal load are larger than in the case of axisymmetric buckling (p - 0) .

The second root of Equation (%h), k., , is rewritten by dividing the

2
last terms by the nonzero factor
2?0, 2
— +=p0%(1 + po°)
lev o
Then,
’ 3(16c)2 82(14p)?
k, = B%(14p)% 4 s (59)
02(169)2 B (14p)? + £008%(14p) + 2
vhere
2 2
0 o2 2<C | lapfe”
5B (1+p) + 1oy * lep
f = 3 (60)
2 42 2y , 2
B B (14p0°) + T~
The factor f depends on the ratio of the core shear moduli 02 and

is equal to unity for the case of an isotropic core (92 =1) . It

can be observed that the dependence of f on B2 is not large, since

p = .E;7E;~ possesses values in the interval 0.6 to 1.5 for practi- i
cal honeycomb-core materials. The wave aspect ratio parameter p = (kx/l¢)2

is less than or about 0.25 for longwave deformations.

In particular, the ratio

N

2 Of 2 0.2 p . 2.,/2
\62 1-v ¢ B 1+p (2-p l/p ) {
8 .2 2 2 112z 2¢C 1+p/p” X
f I“ A(14p0") + l-v‘ [0 B (14p) + 1oy l4p
:
h} A
g

sl



p(2-02-1/p°)

[l+pp + -a-‘-L—] [1+p/o + Qg—(—ﬂ (l+p)2]
o

1-v)

p(2-p2-1/6%) P
; z < = (2-%1/)  (61)
(l + _3.C_L2 (l + M? = ) h

8 (1-y) 2c“p

is small with respect to unity., If p = 1 (isotropic core), then the
ratio vanishes. For example, wvhen

2c20 +1
. 107
68°(1-y)

then

2 2
Beof /o8 P
f 12

For very short wavelengths,

1+p of
f - and —7 - 0
1+ pp° »°

Upon neglect of the dependence of f on 52 and with the assumption
that 82 is small compared to unity (longwave buckling), the critical
values for the wavelength and load parameters are obtained as

g 1/2 -1/2
c(1+¢) (1+p) 3t - fopt (62)

(Bcr)

l+p

Lh



and
(kee). - 2(14¢) 3/ - 1= oot /e (63)
4

for a given value of p . Equation (63) shows that vhen the core
shear stiffness approaches infinity (0 —=0) , then

(k) = 20100) Vx/e2

cl

This result corresponds to nonaxisysmetric classical buckling of a
homogeneous isotropic shell and is identical to the result obtained
for the axisymmetric mode. However, vhen the shear stiffness is
finite, Equations (63) and (L6) (axisymmetric buckling case) indi-
cate that the two classical sandvich shell results are different.
Indeed, for practical values of the core shear stiffness parameter
(0.0 < p <1,5) , the nonaxisymmetric buckling mode leads to a
slightly different value of the buckling load. The applicability
of these /quations for long shells to shells of finite length is
discussed later.

For a shortwave buckling mode (B = O(1)) , the critical wavelength
parameter

[(14) 150 - topo0|"/2

B = (64)
( cr )2 .\/l_..;‘l
and the corresponding critical load parameter
(kcr)z = (14p) [2(14¢) ~ 3o - few]
- — 1+p
= (1+p) |2(14¢) ~ 30 - > GD(P] (65)
! 1+pp

L5
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since for very short wavelengths,

1+p
2

f —

14pp

Equation ((5), when compared with Equation (L9) for the axisymmetric
case, indicates a higher value of the critical load parameter vhen

(14p)2 2(14¢) - 3
3 < 14— (66)
14po 00y

In most cases this condition will be met; a more complete discussion
follows in the section entitled "RESULTS AND DISCUSSION",
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RESULTS AND DISCUSSION

THEORY

The general theory developed in this investigation is given by Equations
(17), (18), (19), and (20). These relations represent the governing
equations and associated boundary conditions which can be used to de-
scribe the bending, buckling, snd pustbuckling behavior of sandwich
shells (and curved plates). This theory is applicable tn sendwich
shells vhich are constructed of thin, isotropic face layers and a
honeycomb-type core layer; it is considered to be the most complete

and consistent theory developed to date for such a configuration.

Of the many sandwich shell theories which exist ir the literature,
the recent studies (References S and 6) by Wempner et al, are the
most advanced studies with which the present development can be com-
pared, It would appear from a cursory examination that the two the-
ories essentially describe the same problem; nevertheless, it {is
evident, as will be disclosed, that there are marked and important
differences relative to both development and applicability.

A direct comparison with the work of Wempner et al. revesals that:
1. The treatment of the face layers is equivalent.
2. The core considerations utilized i{n Reference 5 are based
on a model in which a contradiction exists between the

SENRE - 8

linearized equilibrium equation employed and the nonlinear
strain-displacement relation assumed. That is, the core
fs assumed to be in a linear state of antiplane stress
while the kinematic relations tacitly imply a more com-
plex behavior.

3. Even though both theories take into account the effect of
core thickness with respect to radii of curvature, the the-
ory of Reference 5 does not account for the fact that a
honeycomb core (which is within the weak core family for
which the theory is stated to be valid) does not possess

the same core shell area at the the two intertaces. For

L - i ST S =N S -
T e it bt 25

k7
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thin sandwich shells (c/p negligible), this considerution is
not important. However, for thick-core sundwich shells, the
only example which i{s illustrated in Refecrence 5, the con-
sideration {s important and renders the rcsults questionably
applicable to a honeycomb-core sandwich or, in fact, to any
thick=core sandwich in which an initially flat core medium
is formed into a curved surface,

L, In Reference 6, which specifically treats thin sandwich shells,
the final equations presented are inapp) cable to the complete
study of the buckling of such shells, since a gross assumption
is invoked that precludes the occurrence of the antisymmetric
face-wrinkling mode of instability.

5. The boundary conditions presented by Wempner et al. are de-
veloped independently of the governing equations and are
stipulated in terms of edge forces only, The present theory
develops both governing equations and force-displacement
boundary conditions within the consistent framework of a

complete variational treatment.

The governing equations (Equations (17), (18), and (19)) of the present
theory can be shown to be equivalent to a single 18th-order partial
differential equation in any one of the variables (for example, the
normal displacement of a face layer). The associated boundary con-
ditions, given by Equation (20), are consistent with the 18th-order
system since 9 boundary conditions on either generalized force or
displacement can be prescribed at an edge of the shell, A special

case of the general equations is applicable to the buckling of a thin,
circular cylindrical shell (see Equation (31)). This equation has been
obtained by systematically reducing the eight governing equations for
the thin, circular cylindrical sandwich shell in axial compression

(Equation (24)) through the use of linear operators.

Before undertaking the discussion of the resulte of the application of
the present theory to the compressive buckling of thin, circular cylin-
drical shells, it is of interest to show the relationship of the present

L8



single-governing equation of the 18th order with previous equations
utilized to stucy the buckling of flat plates and circularly curved
plates and cylinders, including the associated requirement for suf-
ficient boundary conditions to effect complete solutions. With
reference to Table I, it can be seen that the present 15th-order
equation, requiring 9 boundary conditions per edge, reduces to the

‘T other cases indicated when the prescribed simplifying assumptions
are enforced, From the table, it {s noted dramatically that the trend
tovard higher performance structures evidences increasing complexity
vith regard to theoretical considerations. This point, although the
result of theoretical considerations, cannot be casually dismissed by
individuals concerned with the design, development, analysis, and
testing of aerospace components which reflect a strong structures-
materials interface aimed at achieving increased structural efficiency.

AXISYMMETRIC BUCKLING OF THIN, CIRCULAR CYLINDRICAL SANDWICH SHELLS

The solution of Equation (29) for the case of axisymmetric buckling
leads to the buckling criterion, Equation (36), which is presented
graphically in Figure 4. The figure shows the variation of the
buckling load parameter k with wavelength for the cylinder de-
scribed by the parameter values noted. As mentioned earlier, these
parameter values reflect an actual cylinder, the test results for
vhich are described in Reference 10. Figure 4 reveals thst three
distinct minimums occur for practical values of the core stiffness
parameters, Each minimum corresponds to a different buckling mode;
namely, one relatively long-wave antisymmetric mode and two relatively
short-wave modes corresponding to antisymmetric and symmetric buckling.
When the case of a shell with very low values of the core moduli is
considered, a different behavior, leading to consonance of the two
usual antisymmetric modes, is evidenced (Figure 5). Although, on the
basis of weight considerations, such a structure might appear to be
advantageous, the low shear stiffness and the correspondingly large

shear deformations would render the composite impractical.

k9
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10000

36" DIAMETER SANDWICH
CYLINDER (DATA REPORTED
BV CUNNINGHAM AND JACOBSON)

€ =0.025 %-o.ozzs
t-0r11 E-101psi
i\ G

= : - 4ax |
¢= 0.021 oy

p=1

~ 1o k1 (SYMMETRIC)
;l,, K2(ANTISYM-
ZIF METRIC) FULTON
"
* 100 STEIN-MAYERS
MAYERS
10 S . i
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ﬂ=C/A
Figure 4. Relation Between Load Parameter k and Wavelength

Parameter p for a Sandwich Cylinder of Practical
Properties.
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HYPOTHETICAL WEAK-CORE CYLINDER

1000 SR- =0.05 €-0.075
E =107psi ¢=0.045
F =2x109psi ¢=10.55
G =3.33x104psi §=0.690
V

=0.3 p=1
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1 1 L
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B =c/A
Figure 5. Relationship Between Load Parameter k and Wavelength
Parameter B for a Hypothetical Weak-Core Sandwich
Cylinder,
53
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The character of the different buckling modes (Figure )) can be readily

recognized {f a deformation vector

1 € e
N e

7|

is considered.

matrix A

given by Equation (34), this vector can be written as

Bh O k82 +l + 0

2,1/2
(1-v%) ¢ L
5 —.(Bh-kﬁ2+c)(8h-k82+m+—
v (14c) B ¢ 1-v
_ s1-3)Y2 g 1,
x = (B ~k8" +l +0
v c 3t
2 1
z (e" - 182 4 r)
T 8(1+)
2,1/2
2(1-v7) 0p
_ _(a"-ka2+t)(8h-k82+c+w)
L c(l4c) 3

5k

e

W, - W

2C7l

By performance of elementary row operations on the
(Equation (26)), and after substitution of the solution

2

(67)

}

-
(68)



For a solution to Equation (40), only the components u and w are

nonzero. Since the ratio

my & F v c
. X 2 — = (69)
12(1-y°) & m R

£l €

and, usually, since B8~ 1 , the relative face displacement

_ W, - W
2

is seen to be the significant deformation. Thus, the buckling mode

is characterized by essentially symmetric displacements of the faces.
The wavelength of this instability mode is of the order of, or smaller
than, the core thickness (Equation (42)); this mode is referred to as
the symmetric wrinkling mode.

On the basis of a comparison similar to that made in Equation (69),
the solutions corresponding to Equations (44) and (47) are recognized
as being essentially antisymmetric in nature (W>> w , u >> u) .
These characteristics are more pronounced in the case of the longwave
buckling mode than in the wrinkling mode. The former has already been
related to the classical instability mode (Equation (46)); the latter

is referred to as the antisymmetric wrinkling mode. i

In Figures 4 and 5, the curves for the antisymmetric solution based on
the classical theory of Reference 9 approaches an asymptotic value for {
large values of the wavelength parameter. Equation (L4k4), which is valid

also if F 5w (¢ »») , reveals that for increasing B , the load

parameter k2 approaches the classical theory value 3/0p if ¢ =0 i
(membrane faces). The corresponding value of the load !
1
-
2N, = Gc (70) &
is referred to as the ccre shear-failure load in the classical theory. 1

When the bending stiffness of the faces is included (Reference 8), the

25



value of the load parameter does not tend to the asymptotic value but
increases rapidly with increasing values of the wavelength parameter.
This case is described by Equation (47) of the present analysis when

@ - , The solution based on the theory of Reference 5, which employs
the same degree of freedom as the present development, does not reveal
the existence of the antisymmetric wrinkling mode for reasons explained
earlier. That is, an arbitrary, and obviously eminent, assumption that
the effect of normal strain is of negligible order in antisymmetric
deformation of the faces precludes the occurrence of a possible buck-

ling mode,

Closed-form expressions for the critical wavelength parameters, the
associated load parameters, and the stresses are shown in Table II
for each of the three instability modes discussed. It can be con-
cluded from these results that the symmetric wrinkling mode, for
practical parameter values, corresponds t> a lower value of the load
parameter thean the antisymmetric wrinkling mude.* If the converse

were to be true, then
2(1 +¢) v3p -6pp < 2 ¢

or

609 -
sl AN (11)
2(1 +¢) /3 -2

However, for the left-hand side of the inequality, the assumption

B = (1+¢) 39 -o6mp > 1

*This same conclusior is evidenced in the behavior of axially com-
pressed, simply supported columns and plates.
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is made; that is,

1+ 0p9

—_ (72)
(1 +¢) 3

The quantity Opg = (12/n2)(F/Gl) reflects values from 5 to 10 for prac-
tical honeycomb-core materials. If, for example, ¢ = 0.05 , then the
conditions Equations (71) and (72) require that

1+60p < 1.82 ¢ < 1.11 6pp (73)

and the interval [1 + 6pp , 1.1 6pp] 1s nonzero only if 6pp > 9 ;
this appears to be highly unusual. Thus, the critical instability
mode is either the classical mode or the symmetric wrinkling mode,
according to the present theory. It is also observed that both
wrinkling modes show wavelengths that are smaller than the thick-
ness of the shell and possibly of the order of magnitude of the cell
size of the core material. The extreme situation requires a treat-
ment of the core as an aggregate consisting of discrete elements

rather than an idealized continuum.

As long as the theory is applicable, any intent to design a structure
with the same safety margin with respect to different instability

modes requires that

2(1 + ¢) 3§/€2 - ep§/€2 = 2 ;; (T4)

or, approximately (c <<1) ,

2 2
Bon = -2f'c— cp3/2+2 5—5— o (75)

For each assumed value of the curvature parameter { , the relation

between @p7 , which is proportional to F/G1 (a characteristic
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quantity for a core material) and the core stiffness parameter ¢ can
be determined. Figure 6 shows a stability boundary for the two modes
of buckling. The ranges of practical values of Opp are indicated
for two typical core materials.

NONAXISYMMETRIC BUCKLING OF THIN, CIRCULAR CYLINDRICAL SANDWICH SHELLS

The solution to Equation (29) for the case of nonaxisymmetric buckling
leads to the buckling criterion given by Equation (52)., The critical
values of the wavelength parameter B and the corresponding load
parameter k , obtained from this equation, are shown in Table III,

A comparison with the corresponding results for the case of axisym-
metric buckling discloses that for both wrinkling modes, the critical
values of the wavelength parameter are 1/  T—:_;- times the values for
the axisymmetric case. In the isotropic case (p = 1) , the critical

load parameter is (1 + p) times as large for both wrinkling modes.

The longwave buckling mode (classical mode) also reveals a higher buck-

ling load for the nonaxisymmetric case, as the positive factor

6 , 2c? (1 + p/pz)

£ -B + >
p l1-v (1 +p)
6 5 5 262
1+p -B°(1 + po°) + —
P l-y
is smaller than unity if
2 2
2¢ (2 +p - 1/p%)
0" > - — = (76)
1-v. (1 +p)

This condition is usually satisfied, as all quantities are nonzero and
positive while 1/p2 < 1.5 ; that is, the right-hand side of the in-

equality is negative in many practical cases.

However, it should be noticed that for shells of finite length, this

conc.usion is too sweeping. In the foregoing analysis, the wavelength
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parameter f3 is treated as a continuous variable, When the cylinder

is assumed to accommodate only an integer number m of halfwaves, then
B = (c/L)m just takes discrete values. Either one of the two discrete
values enclosing the theoretical critical value of a continuous variable
B may correspond to the lowest value of the load parameter k . This
value of the load parameter, of course, will be higher than the minimum
value reached in case of a continuous B . The magnitude of these
deviations from the critical load parameters as given by Equations (46)
and (63) can be ascertained only by numerical evaluation of a particular
case., However, it can be observed that this effect is small as 8k/662
is near zero in the vicinity of the critical wavelength., Only in cases
where the last term on the right-hand side of Equations (46) and (63) is
small with respect to the first term (60§/€2 <K 2(14¢) -~ 3t/e? ) may
the nonaxisymmetric buckling mode yield a slightly different and pos-
sibly lower buckling load. However, in view of other simplifications
made, the axisymmetric buckling load can be used to predict the clas-

sical buckling mode in most practical cases,

WEAK CORE SHELLS

The approximate closed-form expressions for the critical loads and wave-
lengths of the two antisymmetric buckling modes are derived on the basis
of assumptions with respect to the order of magnitude of the wavelength
parameter B , For the classical mode, B 1is assumed to be much smal-
ler than unity. In order to assess the effect of the core stiffness on
the critical wavelength, the axisymmetric case is considered (Table II),

It is seen that for the classical mode,

5B c S\ B
= - ——2' = 2 > O (77)
5(6p) AS 5(6p) 2¢

The quantity 6p 1is proportional to 1/G1 . For decreacing core
stiffness, d(gp) > O and, hence, dA <0 . If 6p approaches the
value c(1l+¢) ‘\37§ , then the wavelength parameter tends to infinity

(the wavelength tends to zero) and the approximation is no longer valid.
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This degenerate case is the classical "shear-failure" phenomenon, with

a critical load parameter

(kcr) . = 3(1 + 6)2/99 (78)

For the shortwave antisymmetric wrinkling mode, the wavelength parameter

B 1s assumed to be of the order of magnitude of unity or larger. To

evaluate the effect of core shear stiffness in this case, it must be

noticed that the quantity 6pp 1is proportional to F/G1 and that this

ratio does not vary appreciably for a given type of core material. Then,
OB c oA -JB" 1.% e

. = — > 0 (79)
O

2 % L o B

But as dp < O for a decreasing core stiffness, d» > 0 . If with de-

P

creasing core stiffness (1 + €) " 3¢ - 6pp -0 , then (Bcr)g -0
(the wavelength increases beyond bounds) and the assumption
B =0(1) 1is violated.

Clearly, the wavelengths of the two antisymmetric buckling modes ap-
proach each other as the core stiffness decreases, and they eventually
coalesce (Figure 5)., Which of the two critical load formulas (Equa-
tions (46) and (49)) best approximates the minimum value depends on the
magnitude of B for which the coalescence occurs, The "shear-failure"

formula (Equation (78)) constitutes a lower bound in any case.

The criteria developed herein are utilized to predict the buckling loads
of the sandwich cylinders constructed and tested as reported in References
10, 18, and 19, In the first and last, axial compression tests were car-
ried out; in the second, the cylinders were tested in bending. With re-
gard to the bending tests, the cylinders reflect thickness-to-radius
ratios and radius-to-length ratios sufficiently large to permit the

use of the axial compression buckling criteria.
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The results of the comparison of theoretical prediction with experi-
ment is presented in Table IV, The theoretical buckling stresses are
obtained, as appropriate, from either Equations (43), (45), and (49)

or their reduced-stiffness counterparts developed in Appendix IV as
Equations (125), (127), and (129). 1In view of the fact that all of

the cylinders tested demonstrate practical construction and that the
bending tests were somewhat affected by end conditions, it would ap-
pear that good agreement has been realized. The implication, based

on the limited test data, is that buckling stresses for sandwich cylin-
ders with geometric and material parameters in the practical range of
interest are given in good approximation by linear theory with no ap-
parent need for the excessive "knock-down" factors appearing in current
design criteria. The ratio of experimental and theoretically predicted
critical stress, 1n , based on the data of References 10, 18, and 19
and the present theory (see Table IV), is shown in Figure 7. For com-
parison, design recommendations applicable to general instability of
initially imperfect, linear elastic shells (see References 20 and 21)
are included in Figure 7.
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CONCLUS TONS

This report presents the governing equations and boundary conditions
for moderately large deflections of a sandwich shell of arbitrary
shape., Equilibrium equations and boundary conditions for both the
thin-face layers and the thick-core layers are consistently derived
from the condition for a stationary value of the total potential.

For the core, the face parallel stresses are neglected; but the
transverse strain is included, and, unlike previous theories em-
ploying the same degrees of freedom, the relevant strain displace-
ment relations for the core are linearizeu, The stiffness parameters
of the core are assumed to vary linearly through the thickness, as is
the case in a curved-core layer of cell structure, In Reference 5,
not only linear terms in the normal coordinate are retained but also
higher order terms, while the stiffness parameters are assumed to be
constant, The present approach is believed to provide a more consis-
tent treatment of the core. These assumptions allow the three equi-
librium equations of the core equation to be integrated with respect
to the normal coordinate; all loads transferred by the core can be
expressed in terms of the components of the face displacements and
two core-shear angles, while two compatibility equations are obtained

as auxiliary conditions.

As a final set, three equilibrium equations and four boundary condi-
tions for the edge of each of the face layeres are presented in terms
of the face-displacement components, They are of the type usually
obtained on the basis of the Kirchhoff-Love assumptions for a thin
shell,

In addition, two compatibility conditions and one boundary condition
for the core are given also in terms of the face displacements. The
eight governing equations and the nine boundary conditions, then, are

functions of two surface coordinates only.
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Linearization leads to a set of equations with a symmetric operator
matrix as is appropriate for a linear elastic system, The order of
a single governing equation, as derived from the operator matrix of

the full set, is 18, with 9 boundary conditions which can be speci-
fied at an edge in terms of either generalized force or displacement.

The specification of a consistent set of boundary conditions is nec-
essary not only for the derivation of an exact or approximate solution
to a problem but also for a meaningful comparison of theoretical pre-
dictions and the results of appropriate tests. Although the nine sets
of boundary conditions occur in a discouragingly large number of pos-
sible combinations, practical designs will limit the number of com-
binations and should, in addition, stimulate the analysis of important
boundary situations other than the very limited set that is usually

considered,

The unified theory is used to estimate the range of applicability of
classical theories or simplified versions of the present theory. In
an example, the critical loads for an axially compressed circular

cylinder are determined.

In general, three instability modes are possible:

1. An instability pattern with a wavelength of several times the
shell thickness and negligible transverse strain, This mode
corresponds to the results obtained from the classical sand-
wich theory, ignoring core normal strain.

2. A face-wrinkling pattern of very short wavelength (of the
order of the shell thickness) and characterized by essen-
tially similar face displacements (antisymmetric wrinkling).

5. A face-wrinkling mode of comparable wavelength but face dis- 1
placements that are essentially symmetric with respect to the
middle surface of the shell (symmetric wrinkling).

By means of a parameter study, approximate expressions for the critical

o :-*‘ = =

loads and wavelengths of all three instability modes are derived. The
limits of applicability are indicated. The study also reveals that the
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symmetric wrinkling mode will, for most practical sandwiches, lead to
the lowest wrinkling load. In Reference >, the opposite conclusion is
reached; however, it appears that the results of numerical analysis

are not consistent with the basic theory.

The parameter analysis further discloses that, with decreasing core
stiffness, the wavelengths of the two antisymmetric modes (wrinkling
and overall instability) approach each other and finally coincide.
The coalescence of critical wavelengths can occur near the overall
instability wavelengths as well as near the wrinkling wavelength.
Only in the first case is the classical '"shear failure" formula a

good approximation.

The critical loads derived from a nonaxisymmetric deformation pattern
may be lower in case of the longwave deformation, but it is shown
that the difference will be small,

A comparison with limited experiments suggests that critical loads
derived from a linear analysis of axially compressed sandwich cylin-
ders should be used to predict the buckling loads of such cylinders.,
The present analysis shows also that a consideration of the discrete
core structure may be necessary to account for existing discrepancies
between linear theory and experiment. However, unlike the case of
homogeneous, isotropic shells, the discrepancies that do exist appear
to be more a function of core deformation prior to buckling and in-
elastic behavior at buckling rather than the result of overall im-
perfections in the sandwich shell wall.
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APFENDIX I
VARIATIONAL DERIVATION OF THE GOVERNING EQUATIONS FOR FACE SHEETS

The face sheets are treated as thin, shallow shells of linearly elastic
isotropic material, The governing equations are derived from the con-

dition for a stationary value of the total potential., The total poten-
tial is defined as the sum of the strain energy function and a potential

function of the applied loads, as appropriate.

THE STRAIN ENERGY FUNCTION

The appropriate strain energy density expression for linearly elastic
thin shells, consistent with the Kirchhoff-Love assumptions, 13:7

c, | 1-y

W SIS e§+eg+2vele2+— 7?2]
i 21 2 i

2 12

D, [
¢ 2 K2+K2+2vKK + 2(1-y) K2
1 2 1 1

L

(1 =1,2) (80)

For the case of small strains and moderate out-of-plane rotations, the

inplane rotation about the normal, determined by the quantity

1 1 1 u v
Q = = |= o +——q
2 |«& A ala2 2,§1

Vy, -S-u,, -
1 b % T 2,y L

1s neglected with respect to the rotations of the normal to the middle

surface given by

- L - u - L e 4
W = a w,§1 ) and  ®, = L (81)
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The middle
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are directions of the principal curvature; the principal curvatures

are 1/p1 and 1/p2 , respectively. The changes of curvature and

surface strains are then approximated by
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POTENTIAL OF APPLIED LOADS 3

The boundary loads on a face sheet are indicated in Figure 2. Upper-
case letters denote loads per unit length; lowercase letters denote 4

loads per unit area.

For the variational problem, as the equivalent of the principle of
virtual displacements for an equilibrium system, a potential of ap-

plied loads V 1is appropriately defined as:

Vi = e ﬁ{Nd + Nd + Nw+Mw -M w]a} d§s
n n s s z nn ns s ] {

> L i
iﬂ q utsw)+q(vi£w)+(q -p)w
1 271 2 2 2 3
S |
. alaagidEI dg,, (85)
in which 1
1 d d
w = W,g -—r—l--—s
8
Ols s T ps
1 d d
w o= w, .L.n
I (0 gn T o]
n n

The total potential function is then defined by

T, = U, +V (86)

It should be noted that the neglect of the inplane rotations and the
product terms in the potential expression involving the out-of-plane
rotations leads to Euler equations of a first variation that are incor-

rect in terms involving rotation components. Adjustments will be made
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later to obtain the simpler form of equilibrium equations for cooidinate
directions on the deformed surface rather than for the original coor-

dinate directions.

Variation of the Total Potential

For an equilibrium system, the first variation of the total potential
vanishes for any set of variations of the argument functions compatible
with imposed boundary conditions., Carrying out the first variation and
integrating by parts integrals containing derivat.ves of the argument

functions Uy, vy, W leads to
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- D(K1 + er) al,ga

+ :ob D(1-v) Kip ' + D(1-y) K12aé,§1:|a1d§1

e,
t t ‘ 1 l
+ —q.,0.dE. + - q0,dE. =N - —M o dE
o, %2 T % | 2 o, ns,t | “s"s
. |
+ f —aw,g D(K1+VK2) a2d§2+D(1-v) Ky 48, ‘
3 Lo 1
+—1—6w ‘D(K+K)C¥d§ + D(1-y) « adg'
A s e V) K12%%2 |
2
: (
+ —ow,, Madt | = 0 87)
o ’§n ns °s

The potential term involving the twisting moment Mn has been integrated
by parts once with respect to the circumferential coordinates S . The
contour is assumed to be smooth; if the contour contains singularities
(corners), the integration by parts also gives rise to terms that are

the product of a variation in the lateral displacement w and a con-
centrated generalized force ("corner reaction"). It is well known that

this identity implies that each of the integrals must vanish identically.
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As the variations &u , v , and Ow are completely arbitrary within
the domain of integration S , the condition 8T =0 leads to the
following set of Euler equations and boundary conditions. Appropriate
quantities have to be assigned a subscript 1 or 2 , Where a double
sign appears, the top sign is to be used in connection with the sub-
script 1 ; the lower, with the subscript 2 ., In § , then,

1-y
%G C— 7 -

|
a, C(e1 + V€2) ”g - C(e2 + vel) a2’§1 + ;

1 2

1-vy 1 [
+C— y. 0 ol

o D(K1 + VK

)
2 2 "51

D(K2 + VK1) a2’§1 +10 D(1-v) K12:

’§2
+ D(1-v) K12g1,§2] F 0,09, = 0 (88a)
i
o, ) (¢, + vey) S
a, C(e, + ve - Cle, + ve,) O +{Q, C— 7
"1 "2 1 $,§2 1 2’ "1, ¢, 2y 12;,gl
[l sy )
+ C— v, & ¥ a,0.q, - — a, DK, + ¥
s ‘1228 T "2 o 1 Va2 1 ”52
- D(Kk, + W,.) Q +’a D(1-v) « '
1 2 "L, T |2 12"51
+ D(1-y) 4<12on’§ ] = 0 (88b)
1
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I |

I | ]
a, D(K1 + VKE) ‘ " - D(K2 + w<1) a2,§1 + lal D(1-v) K1o

2
+ D(1l-v) K, &
1
+ 4 ‘a D(k +w<)' - D(k, + w,) Q
1 2 1 1 2 1,¢
o l "E. ’°2
2 2
+ lae D(I'V) '12 ‘, + D(I'V) K12a2’§ -
3 1 3
2
1
+ o0, C(e1 + vee) (— - Kl)
1
1 1-y
+ C(€2 + vel) (— - K2) - 20— 7,45
p 2
2
+ 5
* o0, (g5 - pl
t
- - (aaql ), + (a1q2 ), = 0 (88¢)
i
On the boundary &S ,
l'V 2 1'V 2
Cley + vep) €q9¢p + C et Cley + veg) cpy0qp +C — 1221
°§1 €11%21 °21°11
- D(1-y) Ky == = D(K, +vK,) - D(k,+WK,) —=—=
12 o 1 2 2 1
1 P Pa
cgl Mn Mns 5
= D(1-v) Kpp == + N_ - = 4+ 22 = 0 or 8d, =0 (8a)
Po TPy




C(c1

’C(c.‘l

1-y

+ V) a1 * € T Tt ¢ Clep + vey) ey
Iy 111 1221
+C— 7100 * D(1-v) Kip =™ = D(K1 + vxa)
2 Dl Dl
c.,€C
2122
- D(K2 + w(l) €011 ~ D(1-v) K1p
P2
M ns
+N-—n+ = 0 or 5d1=0 (89b)
p T n
i
1 u l-vy 1 v
+vc)(—w -—)c +C— (—w -—)c
2 e 21 12 N 21
al 1 p1 2 ae 2 p1
1 v l-y 1 u
+ C(c +vc)(—w --)c +4C— 1y (—w -—)c
2 1 g 11 12 "t 11
02 2 Py 2 al 1 Pq
1
-—|d ‘D(K + 9,) ¢ + D(1-y) k,.C '
o 11( 1 2’ 21 12 11‘
8
+d ‘D(K + ¥,) €4 + D(1-y) K, c ,
12 | P2 ¥ ‘i 12°1§] ,,
8
1
- — ‘a D(x +vK)' - D(k, + W,) Q
5 | 2 71 2’y , 2 1/ %2,¢
« 1
172
+‘oz D(1-v) « ' + D[1-y) k@ c
| 1 12 ,, 1271,¢, | “21
2
g I :
- — - '
'al D(K2 + w(l) ¥ D(K1 + vxe) (11’g (Cont'd)
a,a, §2 2
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!
+ lae D(1-v) Ko i + D(1-v) K12a2,§ 11
3 1

2]

t t 1

+ = q,¢c,, +— q,C =N +—M = 0
> 1721 > 211 z o ns,gsJi

1]
(@]

or 8wi (89¢)

f | |
'D(KI + VK2) €y + D(1-v) K321 | d21 + 'D(Ka + wcl) 1y

+ D(1-y) K12%01 ‘ dyy + M .

or 6wi’§n = 0 (89d)

The three Euler equations for the variations Bu , v , and &w

(88a,b,c) are recognized as the equilibrium equations for components

of forces in the three coordinate directions. The last Euler equation 4
has been rewritten, using the first two. %
The four sets of boundary conditions (89a,b,c,d) are obtained from the i

boundary integrals by use of suitable transformations from the §1, §2

coordinate system into the gs,gn system, The transformation symbols

c and d are defined by

o o8
a, Ot a, Ot
cll = "—1 -—l I} c12 = _1- _1 ’ etc.
a ags o agn
a ot a, ot
4y - -2 d)p = £ B et (90)
oy agl a, a§2
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APPENDIX II
THE GOVERNING EQUATIONS FOR A CORE MODEL

The analysis of the core is based on the assumption that the inplane
shear stiffness anv evtensional stiffness of the core are negligible
with respect to the transverse shear and extensional stiffness quanti-

ties.

Further, if the rotation about the normal to the 1-2 coordinate surface
is considered to be much smaller than the rotation about tangents to
the same surface (consistent with the assumption made for the face

sheets), then the essential strain-displacement relations reduce to

- .u 1
713 = uyp o “1,§ + 3 w,gl (91a)
_ v 1
Vo3 = v,g - a; a2,§ + a; w,ge (91b)
1 2 1
€5 = Wy +3 Uy +3 v?c (91c)

For a core with a cell structure consisting of walls perpendicular to
the { = O coordinate surface, the last two terms in the expression
for the transverse strain correspond to rotation of cell walls out of
their planes. If the squares of these rotations are not negligible with
respect to thg linear term w,g , then the effects of the stresses

and strains in the cell walls, that correspond to a state of plane
stress and are neglected a priori, would certainly have to be retained

in the equilibrium equations.

Consistent with the initial neglect, therefore, the strain-displacement
relations of the core are linearized; that is, the underlined terms in

Equation (91c) are omitted.
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For a core of cell structure, the appropriate stiffness quantities are

F(¢)oya, = F(o)61&2 = Fo,Q

1%2
6,(t), = 61(0)62 = 61&2
Gty = <;2(o)&1 = c261 (92)

The strain energy of the core is

S0 & daw A - Lo 2| amaas o
R

and the potential of the applied loads is

c/2

c/2 5
” (qlu +qv + q3w) 040, / dg,dg, - ﬁf q wa dE df
s =4 3 -c¢/2
(9%)
The total potential of the core is
T, = U, +V, (95)

For a stationary character of the total potential, the first variation
must vanish identically; thus,

8T, f f f au[ CHX 2713) - Cy0yr150y p| 48;d8 L

+ /ff ov _ - (o Ga1723) G2a1723a2,§- d§1d§2d§
R
+ fff ow L m 2 orp " (G1a2713),§ - (c2a1723),§ d§1d§2d§

R 1 2
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= - c/2

[ a,
+ ff Bu Otlcx2 61 a_ 713 - q d§1d§2
s 2 dt=-c/2
- 51 5 c/2
* ff %7 A% Gp o3 " “2: dtydé,
S 1 Ly
i a3 1¢/2
172
+ ff ow - a1a2 {F a_a w,c -qBIJ d§1d§2
s - 172 t=-c/2
c/2 a a .
+ f f ow [G1 . 71301 d§ + 62 N 723 Otldg1 -q a.dga dat
3 -c/2 2 1
= 0 (96)

As the variations 8u , 5v , and ©&w are arbitrary everywhere inside
the domain of integration and in the interfaces, the following Euler

equaticns and boundary conditions result:

(“161"‘2713), + 61057150 4 -

a
__2 (a€713)’§ = 0

1
_ (in R)
_ 6%
(“2G2°‘1723), + Gy Y5ty ¢ N (@5r55) = 0
2
w)cc [( 1713) + (a ‘;723) ’e ] = 0 (97)
2
Q
2
G, —™ 7y = q
1 aa 13 1
_ (inS, t =% ¢/2)
4
0 =3 % % (98)
1
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F — w,, = ¢
¢ 3
%%
a2 a »
2 %

(on 35, lt] <c/2) (99)
The Euler equations can be integrated. The first two equations yiesld
13(0)3@) = 7500050 = &
755(0)05(8) = 7,5(0005(0) = 7,35
Further, as ai(;) = ai(o)(l + g/pi) , these results can be written as
75(6) = 7y (1= 2/p)) + 0(t?/63)
753(8) = 75 (1 - 2/py) + 0(t%/63) (100)

The shear-stress distribution across the thickness of the core model is

completely determined by the equilibrium equations.

The last Euler equation can be integrated twice with respect to { .
With the use of Equation (100), there results

P 2y 6 _ 2 t?\ 6, _
"(gllgzyg) F - - = N (0271) = - e (0172)
Q.

vy v ’
392 2 !‘(120z1 !2

+ £(8,8,) L +n(E, L)
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Terns of the order ga/pi have consistently been neglected with respect
to unity,

The two functions f(gl,ga) and h(gl,g can be determined by making

)
2
use of the "boundary conditions"

"(gl.vgz:c/?) = wl
(101)
w(gl,ga,-c/2)= v,

These relations actually express continuity of the lateral displacement
w of the interfaces, as the lateral strain in the faces is neglected.

By use of Equation (101), there results

W, + W WV, = WV
“’“1’;2’;) = —12 '2""_1‘: g;
2 & 2 ] e
sl=r—==r =L@y,
| 8 120, 2 3p, | P, 4
r 2 2 2 3
¢t T ¢ G, _
|z == | =2 @), (102)
8 120, 2 e, ] Fo, L
and, consequently,
2 2
v, - W ¢ c G -
63 = "'); = _L__a-(g-_.., )T]__(0271)
: c fq 129l Hzlaa 1
2 2 :
¢ c G, _
'(; = i ) :2_-'(172)’ (103)
P, 120,/ Fo, N



From the strain displacement relations (Equations (91a) and (91b)), it

is seen that

u 1 1
— =1y3s '~ otV !
(a )": @ 3 a"i " 4

(V) 1 1
"‘)g _723 '_")g
(0 a2 (1: 2

Integration of these relations with respect to { , making use of pre-

vious results and the continuity conditions,

t 1 u

u(t, ,8.,5) = u +-L (—w -—)

12°222 1 5 al 1,§1 by

t 1 u

u(t, b, -5) = u, -—= (—w -—)

17°%22 "2 2 2 o 2,§1 o)

t 1 v

Wyt = oD (e <)

1°"2’e2 1 2 aa 1’§2 Py

t 1 v\

ity = v E (2, )
17°2? "2 2 4, o, 2,§2 o, ‘

results in two compatibility conditions in terms of the components of

the face displacements and the core shear functions 71 and Yo

namely, .
c c 1 c + t:1 c2 + 3t:1c
u, 1-'—'-)-u2(14-—)+_—wlg = - — !
4 ]
20, 2p1 a, 1 2 6p1 i
1 2
c + t:2 c + 3t2c
+ =, £ [ = + — | = 71¢
)
Q 1 5 6p1
3
c G
& —— (@yry)  + == (@7,) ] = 0 (105)
2Ry Loy g1 9% 2 ¢,




2 2 2 2
c+t c2 + 3t.c
2 2
4-_—‘«72,g [ + ]-72c
a, 2 2 6p2
c3 01 - G2 -
+— [__ Gy, + =2 @yry). ] - 0 (106)
12k, | oyay g %% 21,8,

The boundary conditions (Equation (98)) allow elimination of the inter-
face loads 9 5 4 5 and 9 from the Euler equations of the faces;
then by use of Equations (100) and (103), resulting from integration

of the equilibrium equations of the core, the only unknown functions
remaining are the six face displacement components and the two core
shear functions. Each of these eight functions depends on the surface

coordinates §1 and 52 only,

In addition to these six equilibrium equations for the faces, the two

compatibility conditions (Equations (105) and (106)) have to be satisfied
to guarantee a unique solution., The last boundary condition for the core,
Equation (99), also has to be satisfied in addition to the eight boundary

conditions obtained for the two faceplates,

*
If it is assumed that the boundary load q 1is distributed over the

depth of the core in the same way as the internal shear stresses,
* * —%
e (t) = a(0) (1-2¢/p) = q (1-2t/p,)

then the ninth boundary condition can be written in final form as

- %
6171c21 + 6272c11 + q = 0 or
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(t-)eme (o)
5 |w le——|]+w 1 + —
: 3p 2 3p

8 8
c2 G1 _ G2 _
t— o= Oy v == () = 0 (107)
6F { a0, g 00y £,

According to Saint-Venant's principle, replacement of the actual boundary
load

c/2

S e

-c/2

by the statically equivalent load E"dzs will affect the stress dis-
tribution in a limited edge zone; it also affects the plane-stress
components, However, as these stresses have been ignored in the
present theory, Equation (107) is the appropriate boundary condition
of the core, If the plane-stress components are important, then a
more complete treatment of the core requires consideration of other

than shear loads at the boundary.
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APPENDIX III

BUCKLING EQUATIONS FOR AN AXIALLY COMPRESSED CIRCULAR
CYLINDRICAL SANDWICH CONSTRUCTION

For an axially loaded cylinder, the shallow-shell equations can be used
with great confidence to determine buckling or postbuckling behavior,
The following substitutions are made in order to specialize Equations
(19) and (20) for this case (see Figure 3). For the reference surface,

§].
§2 = @ ae = R = p2 = P

For face 1 (outer face):

al = 1 p1 = o
(108)
% = R = 0
For face 2 (inner face):
al = 1 pl = o0
% B =l
At the boundary, x=0 :
§5=-cp °‘3=R1=°s ds=-v Ns=-Ncp Ms'—'-Mq;
§n=x Ctn=1 pn=°° dn=u Nn=Nx Mn= Mx
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11 22 z
¢lp= 1= ¢y
dig = 0= dp
dp=-1=-dy (109)
At the boundary, x =1L :
§s=cp as=R1=ps ds=v N5=Nq> M8=M(p
§n=x an=1 (S G dn=-u Nn=-Nx l\‘ln=-Mx
€11= 0= ¢ A U Ny=- %
2= "1 =
d13= 0 =dyp
dp=1=-4dy (110)
Compatibility conditions:
L)
u, ~u, - ¢y, + — |G,y + Gy, =
1" Y% 17 o | Ve T 2 2,cp]’x
c + tl c + t2
+ Wit W = 0 (111a)
o »X o 2,x
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c c c
voll-—1}-v. (1l +—]-¢cy. +— |G,y + G| =
1( za) 2( 2R) 2 121?[“"‘ 22""],
c+t c2+3tc
1 1
+ - w, -
2 6R 1,0
c+t2 c2+3t2c
+( + —)w— = 0 (111b)
6R 2"9

Equilibrium equations for faces 1 and 2 :

Ci(c1 + V€2),x +C,

Ci(€2 + vel),q) + Ci

[DI(KI + \»(2)’x + Di(l-v) Kla,q" . + [Di(Kz + VKI),(p + Di(l-v) K12,xl
- )

l-y

2

1-v

2

c
-_— F Gy (1?—)-
12,0 1’1 oR

= 0 (111c)
[o
— Y1o,x F Gy, (1 F ; ) = 0 (1113)

1
(@]
[
—_
m
Pt
+
<
n
n
x
—t
[ ]
(¢}
[
—
m
n
+
<
n
-
~
_—
X
n
[}
| =
S ———
]
n
(@]
e
Py
1
<
~
o
~
[
n

I+

Boundary conditions at x =

Ci(e1 + V€2) -

c Wy =W
F(lx-) nt %

2R c
i[(1*—‘:')G'y +(
5 oR 172,

o,L

in

F ¥ 2 3R
C
1¥- |6 -1= 0 11le
-) 272,¢] (111¢)
0 or du; =0 (112a)

ok

e S ——

e



l-y

c, ? e " Ncpi = 0 or v, = 0 (112b)
( ) -y t, c
-C (e, +ve,) w,_ -C, — w, =—G 1F—])+N -M
1151 7 Ve Mo TRy T N1 T T 171( en) t ~ Vol,p
- Di('(l + wca)’x - 2D1(1-v) K12,q> = 0 or dw, = 0 (112¢) #
é
- Di(x1 + VK2) - Mcpi = 0 or By (1124) ;
$
- q = g
c:Gly1 +q = 0 or /
f
i
[ ( c ) ( c ) 2 : l] : ) i
Blw, 11 - —)+w, {l+—)+— )G,y + Gy, = = 0 112e 1
1 3R 2 3R 6F 171,x 2 2,q>‘ 1
3
Under the shallow-shell assumptions, the strains and changes of the
curvature are simply
- - 1 2
€1 % & T Wyt Vi
- = w, 1 2
€& = eq} = v,(p+R+2 w’cp i
Y12 7x(p = “:(p Vv, + w’xw’cp
(113)
K1 7 K% 7 Vi
Ky = K(P = w,w
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If it 1is assumed that the cylinder deforms uniformly under a uniformly
applied axial compressive load up to a critical value of the load (that
is, no edge loads are present other than the compressive force in s
then the subcritical state of deformation is characterized by the uni-
form lateral displacements w: and w; , the absence of shear deforma-
tions 21 and 7o of the core, and the circumferential displacements
vq and Vo . Also, in the present notation, the changes of curvature

as well as derivatives in the ¢q-direction are zero.

From (111a) then, it follows that U =y, = u , Equations (111b,d)
and the boundary conditions (112b,c,d,e) are satisfied identically,
Equations (1lllc) and the boundary conditions (112a) show that

* w:
Ny = Ci(€1+ve2) = Ci(“’x+vR—) (11%)
i
while Equation (11le) becomes
c, [v ] e\ o=
Y e . +F(1-—)-1—-2 =0
R, | R, ] 2/ ¢
c, [w, ] c\ W o
ol B -F(1+—)—1—2 =0 (115)
R2 -R2 | 2R c

Subcritical deformations are marked by an asterisk.

Multiplication of the first of Equation (115) by R, and of the second
by R2 shows, after addition of the two results, that the total cir-
cumferential force vanishes; that is,

*

*
w L/
1 * 2 * _
Cl( +V“’x)+C2(—+W’x) = 0

- R

1
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Finally, solution of Equations (11k) and (115) yields

F c¢/R
* 2
le = Wy Cl (l-v ) 1+ C2 Cac
1+-=(1-c/2R) + =3 (1 + c/2R)
- 1 FR -
| c/R
D WA
No = u, G, (1 v) 1 < s (116)
1+ == (1+c/2R) + =3 (1 - c/2R)
L c, R d

This determines the ratio of le and Nx2 necessary to achieve a

uniform prebuckling deformation.

For a thin shell ¢/R << 1 and, in this case, neglecting terms of the

order c/R gives

N uy €, (1-7) (117)

xi
Poisson's ratio has been taken to be the same for both faces. For
simplicity, attention may be restricted to the case of completely
similar facings, (Et)1 = (Et)2 . Then, simply,

Ng = Np = - N (118)

If the prebuckling deformations are subtracted from the total deforma-
tions and the buckling deformations so obtained are substituted into
the strain and curvature expressions (Equation (113)), Equations (111)
and (112) describe the postbuckling behavior of the thin sandwich shell

under the assumptions made.

For a determination of the critical load, products of buckling strains
and/or stresses can be omitted and the "buckling equations" for a thin
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sandwich cylinder with similar facings are obtained as:

vy \] (1-v)
Clu +v v + = +C u +v
L 1,x ( 1,0 R /),x A 1,0 1
Y (1-v) |
Clu +viv + -2 + C u + v
2,x 2, R /],x 2 2,0 2
W ] (1-v) [
c vy + 2 + vu, + C uy + vy
9 R x| o o | 1@
vy (1-v) [
c Vo + + vu, o + C u, + v2
'@ R X ] e P P
I t [ ] [:wl -w, ¢
DVw, -— |G,y + G,y +F -— (6
1 5 171,x 2’e, E oF
c vy
+= v, +— 4+ yu
R | 19 R 1
i t ’wl -, c
DVw, ~-—16 + G - F + — (G
2 [ 171,x 272,¢] . - (
+:v +_wg+w
R [ 2,9 R 2
t+c c5 (
u, ~u, + — (w, +w,) _ = 7y.¢c +— (Gyy
1 2 > 1 2/,x 1 12F 171,x
t+c c3 (
v, -~ Vv, + (w, +w,)  =7v7.c+— (Gyy
1 2 > 1 27,0 2 12F 1"1,x

(119a)

(119b)

(119¢)

(1194)

171,x * %72,

(119e)

171,x * 72,0

waé,xx

)

* Ga%p o) x

-G
272,0),0

(119£)

=0 (119g)

=0 (119h)

Appropriate boundary conditions for the problem under consideration are

to be chosen from the following set of pairs:
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i (2=v)

1,9

% »PPX

t
+ (2-v) a5 Glyl

)
2,99x

D [wl,xx + WI’WJ =

D [w,
XX

= Q or

+ VW
2}¢¢‘
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1
0 or vy = 0
- wal,x = 0 or
- waa,x = 0 or
or wl,x =0
or w2,x =0

2
C
vy + Wy +gF (67 + 67y )

(120a)

(120b)

(120c)

(120d)

0 (120e)

0 (120f)

(120g)

(120h)

0 (1201)




APPENDIX IV
EXPRESSIONS FOR CRITI ADS _IN TIC RANGE

The loss of stability of a sandwich cylinder under uniform axial com-
pression may occur at stress levels beyond the elastic limit., In this
case, the change in strain energy due to a small perturbation of the
prestressed state has to be determined, taking into account the sign
of the changes in strain., Stress increments and decrements are re-
lated to changes in strains by different laws. TlLis results in modi-
fied expressions for the bending stiffness and extensional stiffness
of the faceplates and presumably also for the core stiffness.

For the behavior of the faceplates under a prestress beyond the elastic
limit, the following generalization of Hooke's law is used:

g .
s = ) % (Gex-o-u Sew)
“u
(121)
e .
8 = B +pu b
) l.u*e ( ) 3 Gx)

where E* =E or Et and p* =y or 4 according as a stress inten-
sity decreases or increases. E and Et are Young's modulus and the
tangent modulus as obtained from a uniaxial stress-strain curve (pos-
sibly in a tensile test), and v and p ure Poisson's ratios for the
elastic and the inelastic range; plastic deformations are assumed to be
volume preserving (u = 1/2) . The stress intensity o is defined here
as the square root of the second invariant of the stress deviator ten-
sor J, . In the case of the usual plane stress approximation for

2
face sheets,

1
0 +0° - 00 +312 )1/2
P X

ﬁ(x P
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80

)l
g = — - - G
o = = (cx ch) (80'x 50‘@) + L.'rx(pt‘rrx(p
For a perfect cylinder in the prebuckled state, ch = qu) = 0 . Hence,

80 - 80
= G"< X ‘D) (122)

2 Jo | V3

SYMMETRIC WRINKLING MODE

For this mode, w, = -~ w, , while the other displacement components and

1 2
the core shear angle are essentially zero. The only perturbations of
the prestrained state are a bending strain component 6ex = -, o and

a circumferential strain component Seq) = w/R . Then,

*
_ E
5 = = 5 (Gex-&-:)
2 (1+u)V3 o
But
2
22 Rt 2z 5 )
le | / loc | = [——5 | =~ |— | BSAVE > 1
= ¢ t o t

except near the middle surface (z = O) , so the sign of 50 is the
opposite of the sign of sex and the face bending stiffness is taken

3
* -5 b .
D «~ E 15 (12%)

where the reduced modulus E* is the well known double modulus:

1 1\-2 =1
= E E, E E, VE E,
E = 4 Y +—2' > + 2 = v = '\D
142 14 1-v 1 (VE'+,E,)
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According to Equation (40), the wrinkling load is determined by

crxtc2 5 */ 5 o 2F*c5
k = ~ B+ /B = BT+ (124)
oD mtp*e?

In this expression, F' is a reduced core modulus, As the core is
assumed to be stress-free up to the point of instability, F* should
be equal to the elastic value F , Actually, the core is attached
to the faces, and the outer core layers will undergo the same inplane
strains as face layers that are strained beyond their elastic limit,
In addition, buckling of cell walls may be a source of deterioration

of the core stiffness.

An upper limit for the wrinkling stress is found by taking F* =F ;
a low value results if it is assumed that F = F-Et/f . In both
cases, both D* and F* are completely determined by the face stress
T and will be stationary if Oy reaches an extreme value. Hence,

a critical situation prevails, similar to the elastic case, if

B = (w*)l/lL

; the corresponding critical load parameter is

On the basis of the two extreme assumptions regarding the magnitude of
F , the critical stress is assumed to be bounded by

2t o, o2 L

2- /25 FE, 2-/SX F EE,
'V_- - < O.X < - -1 (125)

Y E + ¢ Et E + ‘ Et

CLASSICAL MODE

The classical mode of instability is characterized by a negligible trans-
verse strain and a wavelength that is several times the core thickness.
The ratio of bending strains and neutral surface strains is very smull

for the face layers.
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The essential changes in the state of strain are

de, = u, = -U /A sin mex/A  and
Be, = w/R = W/R sin mex/2
Hence,
_ E, U, X W ™=
601 = r . e l1+4— —=|sgin —
2 (1 +uy) V3 A R U x

Now as w1 ~ Wé , but U1 = - U2 , the term in front of the square
bracket and the second term between the brackets have a different sign
for the two face layers. Then the sign of 6€eff will also differ

for the two faces if

=

A

|
AN
-

(=}
[

TR

This condition is met in most practical cases, and then 8¢ will have
opposite signs in the two face layers. The buckling criterion for the

classical mode, according to Equation (4k4), can be written as

* 2

D T
=8 - Et) £t G
Y
N = 2 - 2 | el Ki b —_ (126)
* D, ™ g2 22 N
1t 5——>— 3 gl 2

GT(c-+t)2/c A

and the appropriate expressions for the reduced bending and hoop stiff-

nesses of the sandwich shell are
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and

[E*t] [E*tJ E+E ¢
———— + | — = —
) 2 >
R0 18], 2 R

If two bounds for the core shear stiffness are chosen as

then all stiffness values are stationary whenever the value of the load

Nx is stationary and bounds for the classical buckling stress are ob-

tained as

E+E B

LS = <%

T - e
E+Et ul
ct E 4+ E E E

< S e (127)

2R E + Et G1

ANTISYMMETRIC WRINKLING

Although, in general, the critical stress for elastic antisymmetric
wrinkling is shown to be larger than the elastic symmetric wrinkling
stress, the antisymmetric result depends on both F and G , while
the symmetric result is independent of G . Hence, if both quanti-
ties are affected by plastic deformations, the ratio of symmetric and
antisymmetric ﬁrinkling stresses will change. In the antisymmetric-
mode, face bending strains are usually larger than face neutral sur-
face strains. If, again, upper and lower bounds for the core stiffness

quantities are assumed in the form
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then all stiffness quantities assume stationary values at the critical

value of the stress. Equation (49) can be written in the form

% ¥ *_*
c+t 6F D 12 FD
N = 2 - (128)
X t c5 c2t G*
1
and the antisymmetric wrinkling stress is assumed to be bounded by
v A
2(c +t) \/QFEQ 42 F EE
c c L t <
= =1 2 = ';'—_-'1 2 x
[+ \’-E-"" ‘\} Et c Gl [" E + “Vl Et ]
2(c+t) /2L F EE, t2 F EE,
;r'='1 = - b _2 - = =12 (129)
Cc \va + \J Et c Gl I "E + VEt‘

It must be noted that the prevalence of face bending strain over face
stretching is less pronounced in the antisymmetric wrinkling mode than
it is in the general instability mode. If the two types of strain be-
came of comparable magnitude, the change in the stress intensity is a

more complicated function of the coordinates and a more complete study

of the inelastic behavior is mandatory.
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